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Abstract
We report 133Cs nuclear magnetic resonance (NMR) measurements of magnetic insulator
Cs2CuCl4 in the paramagnetic phase (T � 4.2 K) as a function of the orientation of an applied
magnetic field with respect to the principal crystalline axes. The magnetic shift tensor is
determined. It is found that its principal axes do not coincide with the principal axes of the
crystal. The Cu–Cs dipolar interaction tensor is calculated as well. From these, we deduce the
full transferred hyperfine tensor for the two inequivalent Cs sites of the unit cell. We find that
the tensors are anisotropic, containing non-zero off-diagonal terms, and that the transferred
hyperfine coupling between Cu electronic spins and Cs nuclei dominates the NMR shift on
both Cs sites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many fascinating phenomena can arise in spin-1/2 antiferro-
magnets (AFs) as a result of an interplay between the geomet-
ric frustration and quantum fluctuations. One such example is
atypical spin dynamics in the 2D spin-1/2 anisotropic triangu-
lar AF Cs2CuCl4 as revealed by neutron scattering [1, 2]. Fur-
thermore, at low temperatures many exotic phases are induced
in that compound in the presence of a magnetic field [3, 4]. As
a local probe, NMR is well suited to study microscopic spin
structure and low energy spin dynamics in these phases. This
is because nuclear spins couple to electronic spins and are sen-
sitive to the local electronic spin arrangement. However, to be
able to infer the microscopic electronic spin structure, knowl-
edge of the hyperfine coupling between nuclei and electronic
spins is required. The entire hyperfine tensor can be obtained
through detailed measurements of NMR spectra as a function
of the magnetic field orientation. Such a study is described in
this manuscript and the full hyperfine tensor is deduced. The
aim of this work is to acquire a detailed understanding of the
effect of magnetism on Cs NMR.

In our previous work [5] we showed that the 133Cs
NMR shift in Cs2CuCl4 is dominated by the Cu spin degrees

of freedom through a strong anisotropic hyperfine coupling.
However, only the magnitude of the coupling along the
principal crystal axes was determined. The paper of Hartmann
et al [6] describes a room temperature NMR study of the
isostructural compounds Cs2MX4 (M = Cu, Co, Zn and
X = Cl, Br), where the tensors of the nuclear quadrupole
coupling and the magnetic shift were determined. Here, we
present the determination of the full transferred hyperfine
tensor for the two inequivalent Cs sites in the paramagnetic
phase (T � 4.2 K) of Cs2CuCl4. The transferred hyperfine
tensor on both Cs sites is found to be anisotropic. The tensor
was deduced from the 133Cs NMR spectra of single crystal
Cs2CuCl4 recorded as a function of the orientation of the
applied magnetic field (H0 = 5 T) with respect to the principal
crystal axes at three different temperatures, T = 293, 81, and
4.2 K. Furthermore, the magnitude of the diagonal terms was
determined from measurements in the fully polarized state at
H0 > 9 T and T < 1 K.

The paper is organized as follows. We describe the
experimental details in section 2.1. In section 2.2 we discuss
basic principles and assumptions necessary for the analysis of
the data. In section 3.1 the temperature dependence of the
quadrupole coupling parameters is discussed. Measurements
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Figure 1. (a) The orthorhombic unit cell of Cs2CuCl4 with the four
independent Cu spins (Cu2+ ions) displayed as the smallest spheres
in the center of the tetrahedra formed by the Cl− ions (bigger, green
spheres). The dashed lines and arrows indicate the local symmetry
axis at each Cu site [10]. The arrows pointing above the (bc)-plane
denote the even Cu chains while the ones pointing below the plane
denote the odd chains. Two inequivalent Cs sites Cs(A) and Cs(B)
are depicted as denoted. Lattice parameters are a = 9.65 Å,
b = 7.48 Å, and c = 12.35 Å [8]. (b) Triangular magnetic lattice
with exchange couplings of J = 0.375 meV along solid lines and
J ′ = 0.125 meV along dashed lines. Darker Cs atoms are located
slightly above the spin (bc) plane and lighter ones below the plane.
The neighboring planes are offset by 0.34c.

of the spin shift for the different orientations of the magnetic
field and deduction of the magnetic shift tensor are presented
in section 3.2. We calculate the dipolar fields in section 3.3 and
the full transferred hyperfine tensor is obtained in section 3.4.

2. Experiment

2.1. Sample and experimental technique

Large single crystals of Cs2CuCl4 grown from an aqueous
solution were used in this study [7]. Their orthorhombic crystal
structure with Pnma [8] space group is shown in figure 1(a).
Each copper atom is surrounded by four chlorine ones that
form a distorted tetrahedron. The axis of symmetry of these
tetrahedra is represented by arrows in figure 1(a). Their
orientation is staggered by an angle ±α � 35◦ along the c-
axis direction and rotated by 180◦ between planes [9]. The
magnetic lattice is formed by a linear chain of the tetrahedra in
the b-direction with two Cl between each Cu and by stacking
of the chains along the c-direction, displaced by b/2 =
3.74 Å with respect to each other. Two types of chains can
be discerned. The chains where the axis of symmetry of the
tetrahedra (arrows in figure 1(a)) points above and below the
(bc)-plane are referred to as even and odd, respectively. The
planes are stacked together along the a-axis and displaced with
respect to each other as depicted in figure 1(b). The material
is an insulator with each magnetic Cu2+ ion carrying spin
S = 1/2, forming a frustrated triangular lattice in the (bc)-
plane [10]. The superexchange routes are mediated by two
nonmagnetic Cl− ions. The two inequivalent Cs sites, labeled
as Cs(A) and Cs(B), in the unit cell are shown in figure 1 as
well. The Cs(A) site is located in the center of the triangle
formed by the Cu spins, while Cs(B) is closer to the base of the
triangle and further away from the spin plane than Cs(A).

The volume of a typical sample used in our experiment
was of the order of 10 mm3. The crystallographic axes were
determined by x-ray Laue diffraction. The faces were cut

perpendicular to the crystal axes. The sample was mounted to
one of the crystal faces and rotated with respect to the applied
field about an axis using a single axis goniometer. The rotation
angle was inferred from the signal of two perpendicularly
positioned Hall sensors.

The measurements were done using a high homogeneity
NMR magnet in an applied field of 5 T. The temperature
control was provided by a continuous flow cryostat. The
NMR data were recorded using a state-of-the-art homemade
NMR spectrometer. NMR spectra were obtained from the sum
of spin-echo Fourier transforms recorded at each 100 KHz
intervals. Since the 133Cs nuclear spin is I = 7/2 and both Cs
sites are in non-cubic environments, seven distinct quadrupolar
satellite lines are observed. The shift was obtained from the
position of the central peak using a gyromagnetic ratio of
γ = 5.5844 MHz T−1.

2.2. Theoretical background

The NMR shift K is generally defined such that the observed
NMR frequency obeys the equation

ω ≡ γ H0(1 + K ), (1)

where γ is the gyromagnetic ratio of the nuclear spin, H0 the
applied magnetic field, and K ≡ Hloc/H0 is the shift. Thus,
K is a measure of the relative strength of the component of
the local magnetic field (Hloc) parallel to the applied magnetic
field, H0. In the more general case where the shift varies as a
function of the orientation of H0 (anisotropic shift), the scalar
K is promoted to a second-rank tensor K and the expression
for the observed NMR frequency becomes [11, 12]

ω = γ H0(1 + ĥ · K · ĥ), (2)

where ĥ = H0/H0 is a unit vector in the direction of the
applied magnetic field.

For Cs nuclei in Cs2CuCl4 the main source of the local
field is the S = 1/2 Cu electronic spins. From an NMR
point of view, it is important to have a good understanding of
the electron–nucleus interaction in order to retrieve relevant
physical information such as microscopic electronic spin
configuration. The Hamiltonian describing the interaction
between a nuclear spin I and electronic spins SN is in general
written as [12, 13]

H = −γ h̄I ·
∑

N

MN · (gμBSN ) . (3)

Here, MN is a second-rank tensor specifying the coupling
between the nuclear spin and the different electronic spins, SN ,
and g is the electronic g-factor with the following components
along the principal crystal axes: ga = 2.27, gb = 2.11,
and gc = 2.36 [3]. In solids such as Cs2CuCl4 with small
quadrupolar interaction, the most common contributions to
the tensor MN are the dipolar interaction tensor DN and the
transferred hyperfine interaction tensor AN . Therefore, MN

can be expressed as

MN = DN + AN , (4)
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Figure 2. The separation between two adjacent quadrupolar-split
satellites as a function of the orientation of the applied field at 5 T
with respect to the crystal axes at T = 293 and 81 K for Cs(A),
upper panel, and Cs(B), lower panel. At T = 81 K two inequivalent
sites, labeled Cs(A1) and Cs(A2), are observed for certain
orientations of the field. Solid lines are fits of the T = 81 K data to
expressions in equation (13).

with the components of the dipolar tensor given by

(
Di j

)
N

= μ0

4π

[
δi j

r 3
N

− 3(ri )N (r j)N

r 5
N

]
, (5)

where μ0 is the permeability of the vacuum and rN the distance
between the nuclear spin and the electronic spin SN .

Using the definition of the Zeeman energy H0 = −µ · H0

and µ = γ h̄I, it follows from equations (3) and (4) that

Hloc = gμB (DN + AN ) · SN and K = Hloc · ĥ
H0

.

(6)
Evidently, if the principal axes of the tensor coincide

with the principal axes of the crystal, the tensor MN will be
diagonal. However, in most complex materials, the principal
axes do not coincide and the tensor MN is not diagonal when
expressed in the crystallographic coordinate system (Oabc). In
that case, it is useful to find the particular coordinate system
Oxyz in which the tensor will be diagonal and a rotation matrix
R that transforms quantities from one coordinate system into
the other (Ã = R

T · A · R). In the Oxyz coordinate system,
all of the off-diagonal terms of the shift tensor K vanish and
equation (2) becomes

ω = γ H0

[
1 +

∑

α

Kα ĥ2
α

]
, (7)

where the summation is over the principal axes of the shift
tensor, i.e. α = {x, y, z}.

The matrix R depends on the detailed electronic
configuration in the material and is therefore very difficult to
estimate. However, its form can be determined experimentally
by recording the NMR spectra as a function of the orientation
of the applied magnetic field with respect to the crystal axes.

Figure 3. Coordinate systems showing the principal crystallographic
axes Oabc, the principal axes Oxyz of the quadrupolar splitting tensor,
and the principal axes of the quadrupolar tensor OXY Z for Cs(A) and
Cs(B). θ and ϕ define the angle between the direction of the applied
field and the principal crystal axes.

3. Results and discussion

We will first discuss quadrupolar parameter measurements to
be able to understand detailed spectral features. Then, we
will proceed to the analysis of the spectra as a function of the
magnetic field orientation.

3.1. Quadrupole splitting

When the quadrupole interaction is taken into account,
equation (1) becomes [11, 12],

ω = γ (1 + K )H0 + ωQ(m − 1/2)

× (
3 cos2 θQ − 1 + η sin2 θQ cos 2ϕQ

)
(8)

up to second order in perturbation theory. The second term
accounts for the quadrupole interaction for each m ↔ m ± 1
transition. Here, θQ and ϕQ are the angles between the applied
field and the principal axes of the electric field gradient (EFG),
shown in figure 3 and defined so that |VZ Z | � |VX X | � |VY Y |
and eq ≡ VZ Z . The asymmetry parameter η is defined as
η ≡ (VX X − VY Y )/VZ Z . The quadrupolar frequency equals
ωQ = 3e2q Q/(h̄2I (2I − 1)), where Q and q are the nuclear
and electronic quadrupole moments.

In figure 2 the average separation between two adjacent
quadrupolar satellite transitions, 
ω, is plotted as a function
of the angle between the principal crystal axes and the applied
field at T = 81 and 293 K for Cs(A) and Cs(B). Within the
error bars, no significant difference in 
ω values is observed as
temperature is lowered from T = 293 to 81 K. The separation
values can be used to deduce the quadrupolar parameters. If the
principal axes of the EFG tensor were to coincide with those
of the crystal, we could in principle have used equation (8) to
deduce the quadrupole parameters. Since this is not the case
in Cs2CuCl4, we introduce the quadrupolar splitting tensor W

such that 
ω = ∑
α Wα ĥ2

α in the coordinate system Oxyz

where W is diagonal. Here, α = {x, y, z} and ĥ is the unit
vector along the applied field.

We then use W̃ = R
T · W · R to express 
ω in the

coordinate system of the crystal. The results have the same
dependence on angles as in the set of equations (13) for the
shift, as discussed in section 3.2. The correspondence between
the principal axes of the EFG tensor and those from the
quadrupolar splitting tensor is such that VZ Z will point along
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Figure 4. 133Cs NMR spectra at T = 81 K and at 5 T applied magnetic field. (a) Spectrum for field applied along the c-axis. The spectrum is
characterized by two sets of lines corresponding to the two inequivalent sites Cs(B) and Cs(A). (b) Spectrum for field applied in the
(ac)-plane at an angle of 70◦ from the a-axis. Additional resonance peaks, beyond seven quadrupolar satellites, reveal the presence of another
inequivalent site.

Table 1. Quadrupole frequency ωQ , the asymmetry parameter η, angle δQ , and the direction of the principal axes of the EFG tensor at
T = 293 and 81 K. Results from [6] at T = 293 K are also reported for comparison.

T (K) ωQ (KHz) η
δQ (deg)
(from a-axis)

293 Cs(A) This work 11.5 ± 1.0 0.06 ± 0.04 17 ± 1
Ref. [6] 11.75 0.038 16.1

293 Cs(B) This work 6.0 ± 1.0 0.16 ± 0.04 90 ± 2
Ref. [6] 6 0.176 93.2

81 Cs(A) This work 14.5 ± 2.0 0.05 ± 0.03 17 ± 1

81 Cs(B) This work 7.3 ± 1.0 0.17 ± 0.03 90 ± 2

max({Wα}), different for both Cs(A) and Cs(B), as shown in
figure 3. Combining these results with equation (8), we find
that the relevant quadrupole parameters, ωQ and η [14], are
given by

Wx = 2ωQ, Wy = ω(1 − η),

Wz = ω(1 + η), for Cs(A),

Wx = ω(1 + η), Wy = ω(1 − η),

Wz = 2ωQ, for Cs(B).

(9)

Their values are summarized in table 1 as well as the
orientation of the principal axis of the EFG tensor. Our
room temperature results are comparable with those in [6].
Furthermore, the parameters at T = 81 K are consistent
with the splittings at T = 2 K deduced from the beats in
the spin–spin relaxation profile [5]. Therefore, we infer that
any significant change of the quadrupolar parameters, and
consequently of the crystal structure of the material, occurs
as temperature is lowered from room temperature down to
T = 80 K. For Cs(A), VZ Z points δQ � ±17◦ away from the
a-axis in the (ac)-plane, as sketched in figure 3. The direction
of VZ Z coincides with the c-axis for Cs(B).

3.2. Rotation studies

In figure 4(a) 133Cs spectra at T = 81 K and H0 = 5 T applied
along the c-axis are shown. Two sets of lines correspond to
crystallographically inequivalent Cs sites, Cs(A) and Cs(B),
respectively. Seven quadrupolar satellites are evident for both
sites. The satellites are separated by 14.1 kHz for Cs(A)
and 14.7 kHz for the Cs(B) site. For Cs(A) we observe that

the intensities of all satellite transitions are comparable to the
intensity of the central transition. It is not clear what causes
these peaks to have equal intensities.

When the applied field is rotated away from the c-axis
in the (ac)-plane, each of these sites splits into two sites,
as illustrated in figure 4(b). For example, in a magnetic
field applied in the (ac)-plane 70◦ away from the a-axis,
the Cs(A) spectrum consists of seven lower intensity peaks
and one higher intensity peak. The intensity of the higher
peak is approximately seven times larger than the intensity
of one of the seven equidistant small peaks. This suggests
the splitting of the magnetic unit cell that causes the partition
of the Cs(A) into two crystallographically inequivalent sites,
Cs(A 1) and Cs(A2). The quadrupole splitting for Cs(A1) is

ω = 12.4 kHz, while that for Cs(A2) is negligible, i.e. 
ω <

2 kHz, as evident in both figures 4(b) and 2. For this particular
orientation the central peak frequencies of Cs(A1) and Cs(A2)
are separated by 60 kHz. This separation depends on the field
orientation, as will be discussed in detail below. The splitting
of the Cs(B) into two inequivalent sites, Cs(B1) and Cs(B2), is
barely noticeable for this field orientation.

The dependence of the NMR spectra peak frequency on
the orientation of the magnetic field at T = 4.2 K is plotted
in figure 5. The magnetic field is rotated with respect to all
three principal crystal axes. The peak frequency is traced since
at T = 4.2 K quadrupolar satellites cannot be discerned due
to magnetic line broadening [5]. The angular dependence of
the peak frequency at T = 81 and 293 K exhibits a similar
periodicity.

For the rotation of the field in the (ac)-plane, each Cs(A)
and Cs(B) resonance line splits into two. No such splitting is
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Figure 5. Frequency of the peak of the NMR spectra at T = 4.2 K as
a function of the angle between the applied field (H0 = 5 T) and one
of the principal crystal axes for Cs(A) (a) and Cs(B) (b). The double
resonance lines in the (ac)-plane are observed for each Cs(A) and
Cs(B) sites. The solid lines are the result of a fit to equation (12).
The dashed line denotes the peak frequency when the field was
rotated about an axis 20◦ away from the c-axis in the (ab)-plane.

detected when the field is rotated in the (bc) and (ab)-planes.
These observations indicate that the splitting of the Cs(A) and
Cs(B) resonance into two lines occurs only when the magnetic
field is misaligned with respect to the principal crystal axes in
the (ac)-plane. Indeed, if the field is rotated exactly about the
c-axis in the (ab)-plane no such splitting is observed. This
splitting, apart from being orientation dependent, also depends
on the temperature and strength of the applied magnetic field.
In the paramagnetic state, the temperature dependence of the
splitting is the same as that of the shift, described by a
Curie–Weiss law having a Curie–Weiss temperature of ∼4
K [5]. This implies that the splitting is an NMR phenomenon
reflecting an intrinsically anisotropic nature of the shift and the
transferred hyperfine interaction. Since the splitting is absent
when the field is exactly aligned along one of the principal
crystallographic axes, we exclude the possibility that it is
caused by the presence of staggered magnetization.

The data presented in figure 5 suffice to determine the
full shift tensor K. We outline how this can be achieved
by identifying a form of the matrix R, as described in
section 2.2. A more general description of arbitrary rotations,
i.e. a general form of the matrix R, is described in [13].
However, considerations of the local symmetry of the crystal at
the cesium site (point group Cs [9]) allow us to restrict the form
of the matrix R. The only allowed symmetry operation for this
point group is a mirror symmetry (a, b, c) → (a,−b, c). An
arbitrary tensor, A, will transform under the mirror operation
M = diag(1,−1, 1) as:

⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ −→
⎛

⎝
A11 −A12 A13

−A21 A22 −A23

A31 −A32 A33

⎞

⎠ .

(10)
Since the tensor has to remain invariant under this
transformation, A13 and A31 are the only off-diagonal terms
that can have a non-zero value. Therefore, we may restrict

our discussion to crystal coordinate systems Oabc that differ
from Oxyz , defined by the shift tensor principal axes, only by
a rotation of δ away from the a-axis in the (ac)-plane. In this
new coordinate system Oabc, the tensor K takes the following
form

K =
⎛

⎝
Kx C2 + Kz S2 0 (Kx − Kz)SC

0 Ky 0
(Kx − Kz)SC 0 KzC2 + Kx S2

⎞

⎠

≡
⎛

⎝
Ka 0 Kac

0 Kb 0
Kac 0 Kc

⎞

⎠ , (11)

where C ≡ cos δ and S ≡ sin δ. The contribution of K to the
shift, as defined in equation (2), in an applied magnetic field,
H0 = (Ha, Hb, Hc) = H0(cos θ, sin θ sin ϕ, sin θ cos ϕ), in
the Oabc coordinate system is given by

K = Ka cos2 θ + 2Kac cos θ sin θ sin ϕ

+ Kb sin2 θ cos2 ϕ + Kc sin2 θ sin2 ϕ. (12)

Here, θ and ϕ are the angles between the direction of the
applied field and the principal crystal axes, defined as shown
in figure 6(a). In the coordinate system Oxyz the shift can be
expressed as,

K = Kx cos2(θ − δ) + Kz sin2(θ − δ)

(ac)-plane,

K = (Kx sin2 δ + Kz cos2 δ) sin2 ϕ + Ky cos2 ϕ

(bc)-plane,

K = (Kx cos2 δ + Kz sin2 δ) cos2 θ + Ky sin2 θ

(ab)-plane.

(13)

The consequences of the chosen local symmetry, Cs , of
the tensor K are made clear by these expressions. Indeed,
under the reflection of δ to −δ, the expressions for the shift
measured for the field applied in the (ab)-and (bc)-planes
remain invariant. However, for the field applied in the (ac)-
plane two distinct shifts are obtained. It should be noted that
the maximum shift is obtained for θ = δ. This particular
signature can be easily discerned experimentally allowing one
to accurately determine the angle δ and the matrix R.

The results of the fit to equation (12) for Cs(A) and Cs(B)
sites are presented by the solid lines in figure 5. Setting the
symmetry arguments aside, it is evident from the data that the
form of the shift tensor in equation (11) is the appropriate one.
In other words, in order to account for the observed splitting
when the field is aligned away from the principal crystal axes
in the (ac)-plane, it is necessary to set Kac = Kca 	= 0
and to allow the sign to change from one site to the other.
Because no splitting is found when the field is rotated in the
(bc)- and (ab)-planes, we set all other off-diagonal terms to
zero. Thus, the form of the shift tensor found experimentally
is in agreement with the local symmetry of the crystal at the
Cesium site. Moreover, symmetry arguments confirm that off-
diagonal terms Kbc , Kcb, Kab, and Kba are truly zero and not
just arbitrarily small due to a limited experimental sensitivity.

The results of the fit at three different temperatures are
summarized in table 2. The shift tensor for the Cs(A) site is

5
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Figure 6. (a) and (b) Coordinate systems showing the principal crystallographic axes Oabc and the principal axes of the shift tensor, denoted
by x, y, z. The x and x ′-axes are rotated about the b-axis away from the a-axis by an angle δK = ±27◦ for Cs(A) and δK = ±10◦ for Cs(B).
Angles θ and ϕ define the angle between the direction of the applied field and the principal crystal axes. (c) Schematic representation of the
triangular lattice of Cu spins S = 1/2 (in blue) and the position of inequivalent Cs sites in Cs2CuCl4, as denoted. The color (shades of gray)
coding for Cs sites refers to the corresponding orientation of the principal axes tensor in (a) and (b).

Table 2. The shift components in %, obtained by fitting the data to
equation (12) for Cs(A) and Cs(B) at three different temperatures.
Angle values are estimated with uncertainties of the order of a few
tenths of a degree.

T (K) Ka Kb Kc Kac δK (deg)

Cs(A)

293 0.22 0.21 0.29 ±0.04 24.4
81 0.95 0.87 1.26 ±0.15 22.0

4.2 9.1 8.2 11.6 ±1.75 27.2

Cs(B)

293 0.023 −0.014 −0.024 ±0.006 −7.1
81 0.20 0.042 0.014 ±0.018 −5.6

4.2 2.1 0.627 0.473 −0.55/+0.25 −13

weakly anisotropic, i.e. the tensor possesses unequal diagonal
terms, with the largest shift component along the c-axis,
i.e. Kc > Ka � Kb. For the Cs(B) site the anisotropy is
more pronounced with the largest shift component along the
a-axis, Ka 
 Kc > Kb, in agreement with our findings
in [5]. Non-zero off-diagonal shift tensor elements imply that
the crystallographic axes are not the principal axes of the shift
tensor. It is found that the principal axes of the shift tensor,
represented in the coordinate system Oxyz , are rotated about
the b-axis so that the z-axis makes an angle δK with the a-axis
as depicted in figure 6. The values of the angles are δK = ±27◦

for Cs(A) and δK = ±10◦ for Cs(B).

The Hloc, as defined in equation (6), that is directly
related to the shift depends on the electron–nuclear interaction
tensor and the Cu spin configuration. To be able to study the
temperature and the field dependence of the spin configuration
it is useful to separate the interaction term itself from the shift
data. For 133Cs NMR in Cs2CuCl4 the interaction tensor can be
expressed as (DN + AN ), where DN is the dipolar interaction
tensor and AN , the transferred hyperfine tensor. Unlike the
dipolar interaction term, the hyperfine tensor is difficult to
calculate from first principles. Therefore, we proceed with
the calculation of the dipolar tensor and will address the
determination of AN in the subsequent section.

3.3. Dipolar interaction

In the paramagnetic state for H0 = 0 T, the net average spin is
zero (〈SN 〉 = 0) due to a random spin orientation. In an applied
magnetic field the average value of the spin projected along the
field is non-zero and independent of the position N relative to
the nuclear spin: SN = 〈S‖〉. Therefore, the expression for the
local field at the nuclear site created by the electronic spin due
to dipolar interaction can be written as:

Hloc = gμB

∑

N

DN · SN ≡ gμBD · 〈S‖〉. (14)

We note here that the dipolar tensor D is independent of N .
Calculation of the dipolar interaction, therefore, only requires
knowledge of the position of the interacting elements, given
in [15]. To ensure convergence, the dipole interaction at each
Cs site is obtained by summing the 12 nearest neighbor Cu
spins in all directions. The numerical results for the D tensor
in the coordinate system of the crystal principal axes (in the
units of [mT/μB]) are

D
Cs(A) =

⎛

⎝
−3.40 −0.01 ±4.26
−0.01 +8.12 −0.03
±4.26 −0.03 −4.72

⎞

⎠ ,

D
Cs(B) =

⎛

⎝
+13.82 −0.04 ±12.26
−0.04 −7.61 −0.04
±12.26 −0.04 −6.21

⎞

⎠ .

(15)

We note that for both Cs(A) and Cs(B) sites values of
Dab, Dba , Dbc , and Dcb are negligible compared to the other
components of the tensor and can be considered to be nearly
zero. Therefore, the dipolar tensor has the same symmetry
as the shift tensor. The off-diagonal terms, Dac and Dca ,
alternate signs for Cs atoms situated on odd and even chains.
The difference between diagonal terms for even and odd chains
within the unit cell is of the order of a few per cent. Above, we
report their average values.

The principal axes of the D tensor, found by diagonaliza-
tion, are rotated by an angle δD about the b-axis of the crys-
tal, similar to the shift tensor, as depicted in figure 6. For the
Cs(A) site the angle δD = ±40.7◦ for the positive and nega-
tive off-diagonal terms, respectively, while for the Cs(B) site
δD = ±26.3◦.
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Table 3. Dipolar shift in % at T = 4.2 K and H0 = 5 T calculated
using equation (16).

Cs(A) K dip
a K dip

b K dip
c K dip

ac
δD = ±49.1◦ −0.031 0.069 −0.044 ±0.039

Cs(B) K dip
a K dip

b K dip
c K dip

ac
δD = ±26.3◦ 0.125 −0.064 −0.059 ±0.113

To calculate the shift associated with the dipolar
interaction, the value of the effective spin 〈S〉 must be known.
In the paramagnetic phase, the effective spin is lower than
0.5/Cu due to a random orientation of spins. Its value
increases, as the applied field increases and as temperature
decreases, following the Curie–Weiss law. At T = 4.2 K
and H0 = 5 T, the value of 〈Si 〉 ∼ 0.2μB/Cu is estimated
from field dependence measurements of the shift up to the
fully polarized state (H0 > 10 T). The shift due to the dipolar
interaction is defined as

K dip =
(

ĥ ·D · ĥ
)

〈S〉/H0. (16)

Using the above equation we calculate the K dip as a function of
the magnetic field orientation at T = 4.2 K and H0 = 5 T. The
detailed results for both Cs(A) and Cs(B) sites are summarized
in table 3.

The contribution of the dipolar interaction to the total
shift at the Cs(A) site is negligible. Specifically, along the
principal crystal axes the ratio of the dipolar contribution to the
total shift equals K dip

a /Ka = −0.34%, K dip
c /Kc = −0.38%,

K dip
b /Kb = 0.84% and K dip

ac /Kac = ±2.23%. At the Cs(B)
site the dipolar interaction contributions to the total shift along
any crystal axis are relatively weak, i.e. K dip

a /Ka = 5.95%,
K dip

b /Kb = −10.2%, K dip
c /Kc = −12.5% and K dip

ac /Kac =
±28.3%.

3.4. Transferred hyperfine interaction

Evidently the dipolar interaction cannot account for the
total shift. Thus, the transferred hyperfine interaction must
dominate the NMR shift especially at the Cs(A) site [6]. It
is extremely difficult to calculate the hyperfine interaction
between a single Cu electronic spin and the Cs nucleus, since
such a calculation requires precise knowledge of the electronic
wavefunction. As the unpaired Cu spin spends most of its time,
nearly 70%, in the 3d orbital and 12% in the 4p orbital, the Cu
wavefunction shows little ‘s’ character. Moreover, since the
Cs and Cu atoms are not nearest neighbors, a direct hyperfine
interaction between Cu spin and Cs nucleus is expected to be
weak. Therefore, it is most likely that the hyperfine interaction
is enhanced via the Cu–Cl–Cs path [6]. Even though the
individual contributions are unknown, we can generally write
an effective transferred hyperfine interaction for spins in the
paramagnetic state as

Hloc = gμB

∑

N

AN · SN ≡ gμBA · 〈S‖〉. (17)

In principle, A can be deduced from the experiment.
Supposing that it is both temperature and magnetic field

independent, the value of A can be determined by measuring
the total shift along the principal crystal axes in the fully
polarized state. It is assumed that 〈S〉 = 0.5/Cu in the
polarized state. In this case, the local internal magnetic field
(Hloc) at the Cs site along any of the principal crystal axes,
denoted by subscript i , is given by

(Hloc)i = 1
2 giμB (Dii + Aii) . (18)

At T = 60 mK in the fully polarized state, i.e. H0 > 10 T, it
was found that Hloc = (1.126, 1.154, 1.451 T) for Cs(A) and
Hloc = (0.276, 0.094, 0.087 T) for Cs(B) [5]. Consequently,
we find that the transferred hyperfine tensor is given by

A
Cs(A) =

⎛

⎝
1.00 0 ±0.185

0 0.960 0
±0.185 0 1.23

⎞

⎠ ,

A
Cs(B) =

⎛

⎝
0.226 0 ±0.045

0 0.0774 0
±0.045 0 0.0526

⎞

⎠ ,

(19)

in units of [T/μB]. Evidently, the transferred hyperfine tensors
have the same symmetry as the shift and dipolar tensors. The
principal axes of the A tensor are rotated by an angle δA about
the b-axis of the crystal, as depicted in figure 6. For the Cs(A)
site the angle is δA = ±29◦, while it equals δA = ±13◦ for
Cs(B) site.

The value of these angles together with the local symmetry
suggest that the form of the transferred hyperfine tensor
for Cs nuclei is closely related to the orientation of the
surrounding Cl tetrahedra as we discuss below. Furthermore,
these considerations provide a simple physical explanation of
the alternating sign of the off-diagonal terms in equation (19).
We consider the hyperfine interaction between the Cs and one
Cu and assume that the strength of the interaction is maximum
when the Cu spin is aligned with the axis of symmetry of the
tetrahedra, see figure 1(a). Furthermore, we assume that in
the coordinate system Oxyz defined by the axis of symmetry
of the tetrahedra, the hyperfine tensor will be diagonal: a =
diag(ax, ay, az). Therefore, in the coordinate system of the
crystal Oabc, related to the Oxyz through a rotation of ±α ∼
35◦ away from the a-axis in the (ac)-plane [9], the hyperfine
tensor takes the non-diagonal form

a±

=
⎛

⎝
ax cos2 α + az sin2 α 0 ±(ax − az) cos α sin α

0 ay 0
±(ax − az) cos α sin α 0 az cos2 α + ax sin2 α

⎞

⎠ .

(20)

Here the off-diagonal terms change sign depending on
the up/down (positive/negative angle α) orientation of the
tetrahedra with respect to the (bc)-plane. The immediate
electronic environment of Cs(A) consists of three tetrahedra
forming a triangle with the Cs located in its center, see figure 7.
On even chains, there are two down and one up such tetrahedra,
while on odd chains, the configuration is two up and one down.
Supposing that only these three hyperfine interactions a±
equally contribute to the net hyperfine interaction, one obtains

A
Cs(A1) � 2a−+a+ and A

Cs(A2) � 2a++a−. (21)
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Figure 7. Scheme of the transferred hyperfine interaction for Cs(A1),
Cs(A2), Cs(B1), and Cs(B2). The orientation of the Cl tetrahedra is
depicted by triangles. The +/− signs refer to up/down orientation of
the axis of symmetry of the tetrahedra with respect to the (bc)-plane.
The dots indicate the direction of the axis of symmetry of the
tetrahedra, denoted by arrows and dashed lines in figure 1(a).

The off-diagonal terms of the net tensor change sign, thus, cre-
ating two inequivalent Cs sites. Moreover, the principal axes
of this net tensor differ from the ones of the tetrahedra most
likely by an angle close to α (δk ≈ α). This is because the
three tetrahedra are situated at approximately equal distances
from the cesium atom. In the case of the Cs(B), the atom is sit-
uated nearly in the middle of two planes with opposite tetrahe-
dra configuration as illustrated in figure 7. As a consequence,
the net hyperfine interaction could be strongly attenuated on
the Cs(B) site, since the contribution of one plane cancels the
contribution from the other one. However, the anisotropic elec-
tronic environment of the Cs(B) results in an incomplete cance-
lation. This explains the smaller values of the Cs(B) hyperfine
tensor elements that are ∼10% of those of the Cs(A), as well
as the smaller angle δK = ±10◦ found experimentally.

4. Conclusion

An extensive 133Cs NMR study of the magnetic insulator
Cs2CuCl4 in its paramagnetic phase as a function of the
orientation of an applied magnetic field with respect to the

principal crystalline axes is presented. The full transferred
hyperfine tensor for the two inequivalent Cs sites of the unit cell
was deduced. The tensors are anisotropic and their principal
axes do not coincide with those of the crystal. The transferred
hyperfine coupling between Cu electronic spins and Cs nuclei
dominates the NMR shift on one of the Cs sites.

Acknowledgments

The work was supported in part by the National Science
Foundation (DMR-0547938). A portion of this work was
performed at the National High Magnetic Field Laboratory,
which is supported by NSF Cooperative Agreement No. DMR-
0084173, by the State of Florida, and by the DOE.

References

[1] Coldea R et al 2001 Phys. Rev. Lett. 86 1335
[2] Coldea R et al 2003 Phys. Rev. B 68 134424
[3] Tokiwa Y et al 2006 Phys. Rev. B 73 134414
[4] Veillette M Y and Chalker J T 2006 Phys. Rev. B

74 052402
[5] Vachon M-A et al 2006 New J. Phys. 8 222
[6] Hartmann H, Strehlow W and Haas H 1968 Z. Naturf. A

23 2029
[7] Soboleva L V et al 1981 Krystallografiya 26 817
[8] Bailleul S et al 1991 C.R. Acad. Sci. 2 313 1149
[9] Bailleul S et al 1994 Eur. J. Solid State Inorg. Chem. 31 431

[10] Coldea R et al 1996 J. Phys.: Condens. Matter 8 7473
[11] Slichter C P 1990 Principles of Magnetic Resonance

(Berlin: Springer)
[12] Abragam A 1961 The Principles of Nuclear Magnetism

(Oxford: Oxford University Press)
[13] Mehring M 1976 High Resolution NMR Sprectroscopy in Solids

(NMR Basic Principles and Progress vol 11) (Berlin:
Springer)

[14] Volkoff G M et al 1952 Can. J. Phys. 30 270
[15] McGinnety J A 1972 J. Am. Chem. Soc. 94 8406

8

http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.73.134414
http://dx.doi.org/10.1103/PhysRevB.74.052402
http://dx.doi.org/10.1088/1367-2630/8/10/222
http://dx.doi.org/10.1088/0953-8984/8/40/012
http://dx.doi.org/10.1021/ja00779a020

	1. Introduction
	2. Experiment
	2.1. Sample and experimental technique
	2.2. Theoretical background

	3. Results and discussion
	3.1. Quadrupole splitting
	3.2. Rotation studies
	3.3. Dipolar interaction
	3.4. Transferred hyperfine interaction

	4. Conclusion
	Acknowledgments
	References

